Genetic switch between unicellularity and multicellularity in marine yeasts

Szathmáry, E. & Smith, J. M. The major evolutionary transitions. Nature 374, 227–232 (1995).
Google Scholar
Brunet, T. & King, N. The origin of animal multicellularity and cell differentiation. Dev. Cell 43, 124–140 (2017).
Google Scholar
Ratcliff, W. C. et al. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat. Commun. 4, 2742 (2013).
Google Scholar
Cornwallis, C. K. et al. Single-cell adaptations shape evolutionary transitions to multicellularity in green algae. Nat. Ecol. Evol. 7, 889–902 (2023).
Google Scholar
Zalar, P. et al. The extremely halotolerant black yeast Hortaea werneckii—a model for intraspecific hybridization in clonal fungi. IMA Fungus 10, 10 (2019).
Google Scholar
Busch, R. J. & Vargas-Muniz, J. M. Hortaea werneckii. Trends Microbiol. 33, 1033–1034 (2025).
Google Scholar
Park, H. S. & Yu, J. H. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15, 669–677 (2012).
Google Scholar
Kim, J.-S. et al. Neodothiora pruni sp. nov., a biosurfactant-producing ascomycetous yeast species isolated from flower of Prunus mume. Mycobiology 51, 388–392 (2023).
Google Scholar
Nijhout, H. F. Development and evolution of adaptive polyphenisms. Evol. Dev. 5, 9–18 (2003).
Google Scholar
Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020).
Google Scholar
Levis, N. A. & Pfennig, D. W. Phenotypic plasticity, canalization, and the origins of novelty: evidence and mechanisms from amphibians. Semin. Cell Dev. Biol. 88, 80–90 (2019).
Google Scholar
Moczek, A. P. et al. The role of developmental plasticity in evolutionary innovation. Proc. R. Soc. B 278, 2705–2713 (2011).
Google Scholar
West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).
Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118–126 (1953).
Google Scholar
Kroos, L. et al. Milestones in the development of Myxococcus xanthus as a model multicellular bacterium. J. Bacteriol. 207, e0007125 (2025).
Google Scholar
Kawabe, Y., Du, Q., Schilde, C. & Schaap, P. Evolution of multicellularity in Dictyostelia. Int. J. Dev. Biol. 63, 359–369 (2019).
Google Scholar
Márquez-Zacarías, P., Conlin, P. L., Tong, K., Pentz, J. T. & Ratcliff, W. C. Why have aggregative multicellular organisms stayed simple? Curr. Genet. 67, 871–876 (2021).
Google Scholar
Booth, D. S. & King, N. The history of Salpingoeca rosetta as a model for reconstructing animal origins. Curr. Top. Dev. Biol. 147, 73–91 (2022).
Google Scholar
Rados, T. et al. Tissue-like multicellular development triggered by mechanical compression in archaea. Science 388, 109–115 (2025).
Google Scholar
Mitchison-Field, L. M. Y. et al. Unconventional cell division cycles from marine-derived yeasts. Curr. Biol. 29, 3439–3456 (2019).
Google Scholar
Goshima, G. Growth and division mode plasticity is dependent on cell density in marine-derived black yeasts. Genes Cells 27, 124–137 (2022).
Google Scholar
Shabardina, V. et al. Ichthyosporea: a window into the origin of animals. Commun. Biol. 7, 915 (2024).
Google Scholar
Schoch, C. L. et al. A class-wide phylogenetic assessment of Dothideomycetes. Stud. Mycol. 64, 1–15 (2009).
Google Scholar
Kurita, G., Goshima, G. & Uesaka, K. Draft genome sequences of two Dothideomycetes strains, NU30 and NU200, derived from the marine environment around Sugashima, Japan. Microbiol. Resour. Announc. 12, e0121722 (2023).
Google Scholar
Martín, V. et al. Cip1 and Cip2 are novel RNA-recognition-motif proteins that counteract Csx1 function during oxidative stress. Mol. Biol. Cell 17, 1176–1183 (2006).
Google Scholar
Li, Y. et al. The Myb family genes in the rice pathogen Magnaporthe oryzae: finding and deleting more family members involved in pathogenicity. Preprint at bioRxiv https://doi.org/10.1101/2021.12.28.474317 (2023).
Lee, S., Völz, R., Song, H., Harris, W. & Lee, Y. H. Characterization of the MYB genes reveals insights into their evolutionary conservation, structural diversity, and functional roles in Magnaporthe oryzae. Front. Microbiol. 12, 721530 (2021).
Google Scholar
Bidlingmaier, S., Weiss, E. L., Seidel, C., Drubin, D. G. & Snyder, M. The Cbk1p pathway is important for polarized cell growth and cell separation in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 2449–2462 (2001).
Google Scholar
Verde, F., Wiley, D. J. & Nurse, P. Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle. Proc. Natl Acad. Sci. USA 95, 7526–7531 (1998).
Google Scholar
Cabib, E., Roh, D. H., Schmidt, M., Crotti, L. B. & Varma, A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 276, 19679–19682 (2001).
Google Scholar
Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).
Google Scholar
Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).
Google Scholar
Bensch, K., Braun, U., Groenewald, J. Z. & Crous, P. W. The genus Cladosporium. Stud. Mycol. 72, 1–401 (2012).
Google Scholar
Mata, J. & Nurse, P. tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89, 939–949 (1997).
Google Scholar
Takeshita, N. et al. The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. J. Cell Sci. 126, 5400–5411 (2013).
Google Scholar
Ojeda-López, M. et al. Evolution of asexual and sexual reproduction in the aspergilli. Stud. Mycol. 91, 37–59 (2018).
Google Scholar
König, S. G. & Nedelcu, A. M. The genetic basis for the evolution of soma: mechanistic evidence for the co-option of a stress-induced gene into a developmental master regulator. Proc. Biol. Sci. 287, 20201414 (2020).
Google Scholar
Abu Hatoum, O. et al. Degradation of myogenic transcription factor MyoD by the ubiquitin pathway in vivo and in vitro: regulation by specific DNA binding. Mol. Cell. Biol. 18, 5670–5677 (1998).
Google Scholar
Pfirrmann, T. et al. Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development. Proc. Natl Acad. Sci. USA 113, 10103–10108 (2016).
Google Scholar
Ratcliff, W. C., Denison, R. F., Borrello, M. & Travisano, M. Experimental evolution of multicellularity. Proc. Natl Acad. Sci. USA 109, 1595–1600 (2012).
Google Scholar
Koschwanez, J. H., Foster, K. R. & Murray, A. W. Improved use of a public good selects for the evolution of undifferentiated multicellularity. eLife 2, e00367 (2013).
Google Scholar
Ratcliff, W. C., Fankhauser, J. D., Rogers, D. W., Greig, D. & Travisano, M. Origins of multicellular evolvability in snowflake yeast. Nat. Commun. 6, 6102 (2015).
Google Scholar
Pineau, R. M. et al. Experimental evolution of multicellularity via cuboidal cell packing in fission yeast. Evol. Lett. 8, 695–704 (2024).
Google Scholar
Bozdag, G. O. et al. De novo evolution of macroscopic multicellularity. Nature 617, 747–754 (2023).
Google Scholar
Tong, K., Bozdag, G. O. & Ratcliff, W. C. Selective drivers of simple multicellularity. Curr. Opin. Microbiol. 67, 102141 (2022).
Google Scholar
Paul, V. J., Freeman, C. J. & Agarwal, V. Chemical ecology of marine sponges: new opportunities through “-omics”. Integr. Comp. Biol. 59, 765–776 (2019).
Google Scholar
Hentschel, U., Piel, J., Degnan, S. M. & Taylor, M. W. Genomic insights into the marine sponge microbiome. Nat. Rev. Microbiol. 10, 641–654 (2012).
Google Scholar
Wilson, R. A. & Talbot, N. J. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 7, 185–195 (2009).
Google Scholar
Barrere, J., Nanda, P. & Murray, A. W. Alternating selection for dispersal and multicellularity favors regulated life cycles. Curr. Biol. 34, 1160 (2024).
Google Scholar
Projecto-Garcia, J., Biddle, J. F. & Ragsdale, E. J. Decoding the architecture and origins of mechanisms for developmental polyphenism. Curr. Opin. Genet. Dev. 47, 1–8 (2017).
Google Scholar
Kijimoto, T. & Moczek, A. P. Hedgehog signaling enables nutrition-responsive inhibition of an alternative morph in a polyphenic beetle. Proc. Natl Acad. Sci. USA 113, 5982–5987 (2016).
Google Scholar
Bento, G., Ogawa, A. & Sommer, R. J. Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 466, 494–497 (2010).
Google Scholar
Ragsdale, E. J., Müller, M. R., Rödelsperger, C. & Sommer, R. J. A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155, 922–933 (2013).
Google Scholar
Foret, S. et al. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc. Natl Acad. Sci. USA 109, 4968–4973 (2012).
Google Scholar
Duncan, E. J., Gluckman, P. D. & Dearden, P. K. Epigenetics, plasticity, and evolution: how do we link epigenetic change to phenotype? J. Exp. Zool. B 322, 208–220 (2014).
Google Scholar
Ozawa, T. et al. Histone deacetylases control module-specific phenotypic plasticity in beetle weapons. Proc. Natl Acad. Sci. USA 113, 15042–15047 (2016).
Google Scholar
Dardiry, M. et al. Divergent combinations of cis-regulatory elements control the evolution of phenotypic plasticity. PLoS Biol. 21, e3002270 (2023).
Google Scholar
Murray, A. W. Can gene-inactivating mutations lead to evolutionary novelty? Curr. Biol. 30, R465–R471 (2020).
Google Scholar
Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).
Google Scholar
Kim, J. & Goshima, G. Mitotic spindle formation in the absence of Polo kinase. Proc. Natl Acad. Sci. USA 119, e2114429119 (2022).
Google Scholar
Zhang, Y. et al. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans. Gene 709, 8–16 (2019).
Google Scholar
Ballance, D. J. & Turner, G. Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36, 321–331 (1985).
Google Scholar
Hernandez-Rodriguez, Y., Bullard, A. M., Busch, R. J., Marshall, A. & Vargas-Muñiz, J. M. Strategies for genetic manipulation of the halotolerant black yeast Hortaea werneckii: ectopic DNA integration and marker-free CRISPR/Cas9 transformation. Microbiol. Spectr. 13, e0243024 (2025).
Google Scholar
Rothstein, R. J. One-step gene disruption in yeast. Methods Enzymol. 101, 202–211 (1983).
Google Scholar
Nakamura, H. et al. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation. J. Gen. Appl. Microbiol. 63, 172–178 (2017).
Google Scholar
Okuno, Y., Okazaki, T. & Masukata, H. Identification of a predominant replication origin in fission yeast. Nucleic Acids Res. 25, 530–537 (1997).
Google Scholar
Takeda, K., Mori, A. & Yanagida, M. Identification of genes affecting the toxicity of anti-cancer drug bortezomib by genome-wide screening in S. pombe. PLoS ONE 6, e22021 (2011).
Google Scholar
Petrucco, C. A. et al. Mechanisms of nuclear segregation in a multinucleate multibudding yeast. J. Cell Biol. https://doi.org/10.1083/jcb.202504068 (2025).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).
Google Scholar
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
Google Scholar
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
Google Scholar
Gostincar, C., Stajich, J. E., Zupancic, J., Zalar, P. & Gunde-Cimerman, N. Genomic evidence for intraspecific hybridization in a clonal and extremely halotolerant yeast. BMC Genom. 19, 364 (2018).
Google Scholar
Gabriel, L. et al. BRAKER3: Fully automated genome annotation using RNA-seq and protein evidence with GeneMark-ETP, AUGUSTUS, and TSEBRA. Genome Res. 34, 769–777 (2024).
Google Scholar
Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom. Bioinform. 3, lqaa108 (2021).
Google Scholar
Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-EP+: eukaryotic gene prediction with self-training in the space of genes and proteins. NAR Genom. Bioinform. 2, lqaa026 (2020).
Google Scholar
Brůna, T., Lomsadze, A. & Borodovsky, M. GeneMark-ETP significantly improves the accuracy of automatic annotation of large eukaryotic genomes. Genome Res. 34, 757–768 (2024).
Google Scholar
Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).
Google Scholar
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).
Google Scholar
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
Google Scholar
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Google Scholar
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).
Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).
Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
Google Scholar
Steenwyk, J. L., Buida, T. J. 3rd, Li, Y., Shen, X. X. & Rokas, A. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18, e3001007 (2020).
Google Scholar
Beimforde, C. et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol. Phylogenet. Evol. 78, 386–398 (2014).
Google Scholar
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
Google Scholar
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
Google Scholar
Schroeder, A. et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 3 (2006).
Google Scholar
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
Google Scholar
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2012).
Google Scholar
Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for Gene Ontology. Bioconductor https://doi.org/10.18129/B9.bioc.topGO (2022).
LaBar, T., Phoebe Hsieh, Y. Y., Fumasoni, M. & Murray, A. W. Evolutionary repair experiments as a window to the molecular diversity of life. Curr. Biol. 30, R565–R574 (2020).
Google Scholar
Van den Bergh, B., Swings, T., Fauvart, M. & Michiels, J. Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/mmbr.00008-18 (2018).
Amses, K. R. et al. Diploid-dominant life cycles characterize the early evolution of Fungi. Proc. Natl Acad. Sci. USA 119, e2116841119 (2022).
Google Scholar
Wang, Y. et al. shinyCircos-V2.0: leveraging the creation of Circos plot with enhanced usability and advanced features. Imeta 2, e109 (2023).
Google Scholar
Source link