News

Artificial intelligence tools expand scientists’ impact but contract science’s focus

  • Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci. USA 81, 3088–3092 (1984).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Commun. ACM, 60, 84–90 (2012).

  • Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, J. & Wang, D. Quantifying the use and potential benefits of artificial intelligence in scientific research. Nat. Human Behav. 8, 2281–2292 (2024).

  • Evans, J. A. Electronic publication and the narrowing of science and scholarship. Science 321, 395–399 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Adıgüzel, T., Kaya, M. H. & Cansu, F. K. Revolutionizing education with AI: exploring the transformative potential of ChatGPT. Contemp. Educat. Technol. 15, ep429 (2023).

  • Akgun, S. & Greenhow, C. Artificial intelligence in education: addressing ethical challenges in K-12 settings. AI Ethics 2, 431–440 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Meskó, B. & Topol, E. J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. npj Digital Med. 6, 120 (2023).

    Article 

    Google Scholar 

  • Loh, H. W. et al. Application of explainable artificial intelligence for healthcare: a systematic review of the last decade (2011–2022). Comput. Methods Prog. Biomed. 226, 107161 (2022).

  • Ahmed, I., Jeon, G. & Piccialli, F. From artificial intelligence to explainable artificial intelligence in industry 4.0: a survey on what, how, and where. IEEE Trans. Indust. Inform. 18, 5031–5042 (2022).

    Article 

    Google Scholar 

    See also  Scientists stunned by colossal formations hidden under the North Sea

  • Varadi, M. et al. Alphafold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucl. Acids Res. 50, D439–D444 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fawzi, A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47–53 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570–578 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stokel-Walker, C. & Van Noorden, R. What ChatGPT and generative AI mean for science. Nature 614, 214–216 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Gilson, A. et al. How does ChatGPT perform on the United States medical licensing examination? The implications of large language models for medical education and knowledge assessment. JMIR Med. Educat. 9, e45312 (2023).

    Article 

    Google Scholar 

  • Salimi, A. & Saheb, H. Large language models in ophthalmology scientific writing: ethical considerations blurred lines or not at all? Am. J. Ophthalmol. 254, 177–181 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Liang, W. et al. Mapping the increasing use of LLMs in scientific papers. In Proc. 1st Conference on Language Modeling (COLM, USA, 2024).

  • Hwang, T. et al. Can ChatGPT assist authors with abstract writing in medical journals? Evaluating the quality of scientific abstracts generated by ChatGPT and original abstracts. PLoS ONE 19, e0297701 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kobak, D., González-Márquez, R., Horvát, E.-Á. & Lause, J. Delving into LLM-assisted writing in biomedical publications through excess vocabulary. Sci. Adv. 11, eadt3813 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wojtowicz, Z. & DeDeo, S. Undermining Mental Proof: How AI Can Make Cooperation Harder by Making Thinking Easier Vol. 39, 1592–1600 (2025).

  • Frank, M. R., Wang, D., Cebrian, M. & Rahwan, I. The evolution of citation graphs in artificial intelligence research. Nat. Mach. Intell. 1, 79–85 (2019).

    Article 

    Google Scholar 

  • OpenAlex (OpenAlex, 2025); https://openalex.org/.

  • Clarivate (Web of Science, 2025); https://www.webofscience.com.

  • Mongeon, P. & Paul-Hus, A. The journal coverage of web of science and scopus: a comparative analysis. Scientometrics 106, 213–228 (2016).

    Article 

    Google Scholar 

  • Devlin, J. et al. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 4171–4186 (ACL, Italy, 2019).

    See also  Scientists Discover Unusual New Species of Octopus With Massive Eyes and Blood-Red Tentacles
  • Wolf, T. et al. Transformers: State-of-the-art natural language processing. In Proc. 58th Annual Meeting of the Association for Computational Linguistics 38–45 (ACL, 2020).

  • Beltagy, I., Lo, K. & Cohan, A. SciBERT: a pretrained language model for scientific text. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 3613–3618 (ACL, Italy, 2019).

  • Cohan, A., Feldman, S., Beltagy, I., Downey, D. & Weld, D. S. SPECTER: document-level representation learning using citation-informed transformers. In Proc. 58th Annual Meeting of the Association for Computational Linguistics 2270–2282 (ACL, 2020).

  • Singh, A., D’Arcy, M., Cohan, A., Downey, D. & Feldman, S. SciRepEval: a multi-format benchmark for scientific document representations. In Proc. 61st Annual Meeting of the Association for Computational Linguistics 5548–5566 (ACL, Canada, 2023).

  • Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977).

  • Fleiss, J. L. Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 378 (1971).

    Article 

    Google Scholar 

  • Chu, J. S. & Evans, J. A. Slowed canonical progress in large fields of science. Proc. Natl Acad. Sci. USA 118, e2021636118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Journal Citation Reports (Clarivate, 2021); https://jcr.clarivate.com/jcr/home.

  • Ioannidis, J. P., Boyack, K. W. & Klavans, R. Estimates of the continuously publishing core in the scientific workforce. PloS ONE 9, e101698 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kendall, D. G. Birth-and-death processes, and the theory of carcinogenesis. Biometrika 47, 13–21 (1960).

    Article 
    MathSciNet 

    Google Scholar 

  • Fortunato, S. et al. Science of science. Science 359, eaao0185 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Milojević, S. Quantifying the cognitive extent of science. J. Informetrics 9, 962–973 (2015).

    Article 

    Google Scholar 

  • McMahan, P. & Evans, J. Ambiguity and engagement. Am. J. Sociol. 124, 860–912 (2018).

    Article 

    Google Scholar 

  • Merton, R. K. The matthew effect in science: the reward and communication systems of science are considered. Science 159, 56–63 (1968).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Borger, J. G. et al. Artificial intelligence takes center stage: exploring the capabilities and implications of chatgpt and other AI-assisted technologies in scientific research and education. Immunol. Cell Biol. 101, 923–935 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Lawrence, N. D. & Montgomery, J. Accelerating AI for science: open data science for science. Royal Soc. Open Sci. 11, 231130 (2024).

    Article 
    ADS 

    Google Scholar 

  • King, R. D. et al. The automation of science. Science 324, 85–89 (2009).

    See also  Mastiha Resin Benefits for Gut Health, Inflammation, and Immune Function

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Krauss, A. Debunking Revolutionary Paradigm Shifts: Evidence of Cumulative Scientific Progress Across Science Vol. 480, 20240141 (The Royal Society, 2024).

  • Microsoft Academic Graph (Microsoft, 2015); https://www.microsoft.com/en-us/research/project/microsoft-academic-graph.

  • Open Academic Graph (Aminer, 2020); https://old.aminer.cn/oag-2-1.

  • Porter, A. & Rafols, I. Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics 81, 719–745 (2009).

    Article 

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article 
    ADS 

    Google Scholar 

  • LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).

    Article 

    Google Scholar 

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual Learning for image recognition. In CVPR’16: Proc. 2016 IEEE conference on computer vision and pattern recognition 770–778 (2016).

  • Face, H. Bert for Sequence Classification (Hugging Face, 2025); https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertForSequenceClassification.

  • Sekara, V. et al. The chaperone effect in scientific publishing. Proc. Natl Acad. Sci. USA 115, 12603–12607 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In KDD’16: Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (2016).

  • Hill, R. et al. The pivot penalty in research. Nature 642, 999–1006 (2025).

  • Milojević, S., Radicchi, F. & Walsh, J. P. Changing demographics of scientific careers: the rise of the temporary workforce. Proc. Natl Acad. Sci. USA 115, 12616–12623 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, F., Wu, L. & Evans, J. Flat teams drive scientific innovation. Proc. Natl Acad. Sci. USA 119, e2200927119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, Y., Frey, C. B. & Wu, L. Remote collaboration fuses fewer breakthrough ideas. Nature 623, 987–991 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kingman, J. F. C. Poisson Processes Vol. 3 (Clarendon, 1992).

  • Meisling, T. Discrete-time queuing theory. Operat. Res. 6, 96–105 (1958).

    Article 
    MathSciNet 

    Google Scholar 


  • Source link

    Digit

    Digit is a versatile content creator with expertise in Health, Technology, Movies, and News. With over 7 years of experience, he delivers well-researched, engaging, and insightful articles that inform and entertain readers. Passionate about keeping his audience updated with accurate and relevant information, Digit combines factual reporting with actionable insights. Follow his latest updates and analyses on DigitPatrox.
    Back to top button
    close