Cryogenically self-healing organic crystals | Nature Materials

  • Al-Handawi, M. B. et al. Autonomous reconstitution of fractured hybrid perovskite single crystals. Adv. Mater. 34, 2109374 (2022).

    Article 
    CAS 

    Google Scholar 

  • Commins, P., Al-Handawi, M. B., Karothu, D. P., Raj, G. & Naumov, P. Efficiently self-healing boronic ester crystals. Chem. Sci. 11, 2606–2613 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mondal, S. et al. Autonomous self-healing organic crystals for nonlinear optics. Nat. Commun. 13, 6589 (2023).

    Article 

    Google Scholar 

  • Kang, J., Tok, J. B. H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Article 

    Google Scholar 

  • Bhunia, S. et al. Autonomous self-repair in piezoelectric molecular crystals. Science 373, 321–327 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ekeocha, J. et al. Challenges and opportunities of self-healing polymers and devices for extreme and hostile environments. Adv. Mater. 33, 2008052 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, H., Ye, K., Zhang, Z. & Zhang, H. An organic crystal with high elasticity at an ultra-low temperature (77 K) and shapeability at high temperatures. Angew. Chem. Int. Ed. 58, 19081–19086 (2019).

    Article 
    CAS 

    Google Scholar 

  • Di, Q. et al. Fluorescence-based thermal sensing with elastic organic crystals. Nat. Commun. 13, 5280 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, H., Ma, X., Wu, S. & Tian, H. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness. Angew. Chem. Int. Ed. 53, 14149–14152 (2014).

    Article 
    CAS 

    Google Scholar 

  • Wei, Z. et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem. Soc. Rev. 43, 8114–8131 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cahen, D., Kronik, L. & Hodes, G. Are defects in lead-halide perovskites healed, tolerated, or both? ACS Energy Lett. 6, 4108–4114 (2021).

    Article 
    CAS 

    Google Scholar 

  • Denissen, W. et al. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25, 2451–2457 (2015).

    Article 
    CAS 

    Google Scholar 

  • Zou, W., Dong, J., Luo, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 29, 1606100 (2017).

    Article 

    Google Scholar 

  • Commins, P., Hara, H. & Naumov, P. Self-healing molecular crystals. Angew. Chem. Int. Ed. 55, 13028–13032 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kathan, M. et al. Control of imine exchange kinetics with photoswitches to modulate self-healing in polysiloxane networks by light illumination. Angew. Chem. Int. Ed. 55, 13882–13886 (2016).

    Article 
    CAS 

    Google Scholar 

  • Cacciapaglia, R., Stefano, S. D. & Mandolini, L. Metathesis reaction of formaldehyde acetals: an easy entry into the dynamic covalent chemistry of cyclophane formation. J. Am. Chem. Soc. 127, 13666–13671 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, N., Xu, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing. Chem. Rev. 121, 1716–1745 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Handawi, M. B. et al. Ferroelastic ionic organic crystals that self-heal to 95%. Nat. Commun. 15, 8095 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, J., Su, Y., Zhu, H. & Cai, T. Shape memory and self-healing in a molecular crystal with inverse temperature symmetry breaking. Chem. Sci. 15, 5738–5745 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pathan, J. R. et al. A self-healing crystal that repairs multiple cracks. J. Am. Chem. Soc. 146, 27100–27108 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, P., Karothu, D. P., Ahmed, E., Naumov, P. & Nath, N. K. Thermally twistable, photobendable, elastically deformable, and self-healable soft crystals. Angew. Chem. Int. Ed. 57, 8498–8502 (2018).

    Article 
    CAS 

    Google Scholar 

  • Liu, G. et al. Self-healing behavior in a thermo-mechanically responsive cocrystal during a reversible phase transition. Angew. Chem. Int. Ed. 56, 198–202 (2017).

    Article 
    CAS 

    Google Scholar 

  • Karothu, D. P., Weston, J., Desta, I. T. & Naumov, P. Shape-memory and self-healing effects in mechanosalient molecular crystals. J. Am. Chem. Soc. 13, 13298–13306 (2016).

    Article 

    Google Scholar 

  • Qiu, K. et al. Self-healing of fractured diamond. Nat. Mater. 22, 1317–1323 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yadavalli, S. K., Dai, Z., Zhou, H., Zhou, Y. & Padture, N. P. Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Mater. 187, 112–121 (2020).

    Article 
    CAS 

    Google Scholar 

  • Yamazaki, T., Driessche, A. E. S. V. & Kimura, Y. High mobility of lattice molecules and defects during the early stage of protein crystallization. Soft Matter 16, 1955–1960 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sierra-Romero, A., Novakovic, K. & Geoghegan, M. A reversible water-based electrostatic adhesive. Angew. Chem. Int. Ed. 63, e202310750 (2024).

    Article 
    CAS 

    Google Scholar 

  • Yamaguchi, M., Ono, S. & Terano, M. Self-repairing property of polymer network with dangling chains. Mater. Lett. 61, 1396–1399 (2007).

    Article 
    CAS 

    Google Scholar 

  • Li, H., Xin, H. L., Muller, D. A. & Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 326, 1244–1247 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L., Bailey, J. B., Subramanian, R. H., Groisman, A. & Tezcan, F. A. Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature 557, 86–91 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Habault, D., Zhang, H. & Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42, 7244–7256 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. M., Zhang, Z. P., Rong, M. Z. & Zhang, M. Q. Sunlight stimulated photochemical self-healing polymers capable of re-bonding damages up to a centimeter below the surface even out of the reach of the illumination. Adv. Mater. 35, 2211009 (2023).

    Article 
    CAS 

    Google Scholar 

  • Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010).

    Article 
    CAS 

    Google Scholar 

  • Commins, P., Al-Handawi, M. B. & Naumov, P. Self-healing crystals. Nat. Rev. Chem. 9, 343–355 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Liu, J. et al. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 29, 1605325 (2017).

    Article 

    Google Scholar 

  • Xu, J., Chen, J., Zhang, Y., Liu, T. & Fu, J. A fast room-temperature self-healing glassy polyurethane. Angew. Chem. Int. Ed. 60, 7947 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hu, J., Mo, R., Jiang, X., Sheng, X. & Zhang, X. Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer 183, 121912 (2019).

    Article 
    CAS 

    Google Scholar 

  • Corten, C. C. & Urban, M. W. Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011–5015 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv. Mater. 34, 2105416 (2022).

    Article 
    CAS 

    Google Scholar 

  • Park, S. K. & Diao, Y. Martensitic transition in molecular crystals for dynamic functional materials. Chem. Soc. Rev. 49, 8287–8314 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Awad, W. M. et al. Mechanical properties and peculiarities of molecular crystals. Chem. Soc. Rev. 52, 3098–3169 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mahmoud Halabi, J., Al-Handawi, M. B., Ceballos, R. & Naumov, P. Intersectional effects of crystal features on the actuation performance of dynamic molecular crystals. J. Am. Chem. Soc. 145, 12173–12180 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Worthy, A. et al. Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate. Nat. Chem. 10, 65–69 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nat. Mater. 9, 36–39 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chung, H. et al. Rotator side chains trigger cooperative transition for shape and function memory effect in organic semiconductors. Nat. Commun. 9, 278 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duan, Y., Semin, S., Tinnemans, P., Xu, J. & Rasing, T. Fully controllable structural phase transition in thermomechanical molecular crystals with a very small thermal hysteresis. Small 17, 2006757 (2021).

    Article 
    CAS 

    Google Scholar 

  • Commins, P. et al. Autonomous and directional flow of water and transport of particles across a subliming dynamic crystal surface. Nat. Chem. 15, 677–684 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 133, 12569–12575 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, X. et al. Logarithmic and Archimedean organic crystalline spirals. Nat. Commun. 15, 9025 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lan, L., Li, L., Wang, C., Naumov, P. & Zhang, H. Efficient aerial water harvesting with self-sensing dynamic Janus crystals. J. Am. Chem. Soc. 146, 30529–30538 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmed, E., Karothu, D. P. & Naumov, P. Crystal adaptronics: mechanically reconfigurable elastic and superelastic molecular crystals. Angew. Chem. Int. Ed. 57, 8837–8846 (2018).

    Article 
    CAS 

    Google Scholar 

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement, and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article 
    CAS 

    Google Scholar 

  • Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macrae, C. F. et al. Mercury CSD 2.0-New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008).

    Article 
    CAS 

    Google Scholar 

  • Lu, T. dimerscan (Beijing Kein Research Center for Natural Sciences, 2019); http://sobereva.com/soft/dimerscan

  • Lu, T. Molclus v.1.12 (Beijing Kein Research Center for Natural Sciences, 2023); http://www.keinsci.com/research/molclus.html

  • Lu, T. & Chen, Q. Simple, efficient, and universal energy decomposition analysis method based on dispersion-corrected density functional theory. J. Phys. Chem. A 127, 7023–7035 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frisch, M. J. et al. Gaussian 16, revision A.03 (Gaussian, Inc., 2016)

  • Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580−592 (2012).

    Article 

    Google Scholar 

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 


  • Source link
    Exit mobile version